Genome-wide survey for PilR recognition sites of the metal-reducing prokaryote Geobacter sulfurreducens.
نویسندگان
چکیده
Geobacter sulfurreducens is a species from the bacterial family Geobacteraceae, members of which participate in bioenergy production and in environmental bioremediation. G. sulfurreducens pili are electrically conductive and are required for Fe(III) oxide reduction and for optimal current production in microbial fuel cells. PilR is an enhancer binding protein, which is an activator acting together with the alternative sigma factor, RpoN, in transcriptional regulation. Both RpoN and PilR are involved in regulation of expression of the pilA gene, whose product is pilin, a structural component of a pilus. Using bioinformatic approaches, we predicted G. sulfurreducens sequence elements that are likely to be regulated by PilR. The functional importance of the genome region containing a PilR binding site predicted upstream of the pilA gene was experimentally validated. The predicted G. sulfurreducens PilR binding sites are similar to PilR binding sites of Pseudomonas and Moraxella. While the number of predicted PilR-regulated sites did not deviate from that expected by chance, multiple sites were predicted upstream of genes with roles in biosynthesis and function of pili and flagella, in secretory pathways, and in cell wall biogenesis, suggesting the possible involvement of G. sulfurreducens PilR in regulation of production and assembly of pili and flagella.
منابع مشابه
Genome-wide similarity search for transcription factors and their binding sites in a metal-reducing prokaryote Geobacter sulfurreducens
The knowledge obtained from understanding individual elements involved in gene regulation is important for reconstructing gene regulatory networks, a key for understanding cellular behavior. To study gene regulatory interactions in a model microorganism, Geobacter sulfurreducens, which participates in metal reduction and energy harvesting, we investigated the presence of 59 known Escherichia co...
متن کاملThe proteome of dissimilatory metal-reducing microorganism Geobacter sulfurreducens under various growth conditions.
The proteome of Geobacter sulfurreducens, a model for the Geobacter species that predominate in many Fe(III)-reducing subsurface environments, was characterized with ultra high-pressure liquid chromatography and mass spectrometry using accurate mass and time (AMT) tags as well as with more traditional two-dimensional polyacrylamide gel electrophoresis (2-D PAGE). Cells were grown under six diff...
متن کاملGSEL version 2, an online genome-wide query system of operon organization and regulatory sequence elements of Geobacter sulfurreducens.
Geobacter sulfurreducens is a model organism within the delta-Proteobacterial family Geobacteraceae, members of which can participate in environmental bioremediation of metal and organic waste contaminants and in production of bioenergy. In this report, we describe a new, significantly expanded and updated, version 2 of the GSEL (Geobacter Sequence Elements) database ( http://geobacter.org/rese...
متن کاملStructural and operational complexity of the Geobacter sulfurreducens genome.
Prokaryotic genomes can be annotated based on their structural, operational, and functional properties. These annotations provide the pivotal scaffold for understanding cellular functions on a genome-scale, such as metabolism and transcriptional regulation. Here, we describe a systems approach to simultaneously determine the structural and operational annotation of the Geobacter sulfurreducens ...
متن کاملGenetic Identification of a PilT Motor in Geobacter sulfurreducens Reveals a Role for Pilus Retraction in Extracellular Electron Transfer
The metal-reducing bacterium Geobacter sulfurreducens requires the expression of conductive pili to reduce iron oxides and to wire electroactive biofilms, but the role of pilus retraction in these functions has remained elusive. Here we show that of the four PilT proteins encoded in the genome of G. sulfurreducens, PilT3 powered pilus retraction in planktonic cells of a PilT-deficient strain of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Gene
دوره 469 1-2 شماره
صفحات -
تاریخ انتشار 2010